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Relevant sections of the textbook

e Section B.2. (incomplete!)



Quotients by relations

Recall from problem 5 of homework #4 that for each a binary relation R on a
set X we can construct a set X/R whose elements are R-classes

[Xlr={y € X| R(x,y)}

for all x € X.
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Quotients by relations

Recall from problem 5 of homework #4 that for each a binary relation R on a
set X we can construct a set X/R whose elements are R-classes

[Xlr={y € X| R(x,y)}
for all x € X. Now collect all such R-classes into one set:
X/R =def {[X]R ‘ X € X}

We call the set X/R the quotient of X by the relation R.
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Consider the set of natural numbers with the usual ordering <: N — N — 2
defined for m € N recursively by

m < 0 ifand only if m= 0, and
m < succ(n) if and only if m = succ(n) orm < n.

We have classes [n] forming a chain in the subset relation ordering:
[0 D [1] D [2] D .... Note that0 < 1 but [0] #[1].
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So far R is just a general binary relation. In general we do not have that

Proposition
Prove that if R is reflexive then Vx € X, x € [x].

Proposition
Prove that if R is transitive then¥x,y € X, R(x, y) A R(y, x) = [x] = [y].

Proposition
Prove that if R is symmetric and transitive then
vx,y € X, R(x,y) = [x] = [y].

Proposition
Prove that if R is reflexive, symmetric and transitive then
vx,y € X, R(x,y) < [x] = [y].
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Suppose we have a graph G. Define a relation R on vertices of G by
imposing that
R(a, b) < there is an edge from ato b.

e What is a class [ag] for a vertex a?
e Show that if R(a, b) A R(b, a) then it is not necessarily true that [a] = [b].
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Suppose we have a graph G. Define a relation R on vertices of G by
imposing that
R(a, b) < there is a path from ato b.

e What is a class [g] for a vertex a?
e Show that if R(a, b) A R(b, a) then [a] = [b].



Proposition
Prove that the function q: X — X /R assigning to each x in X the class [x] in
X /R is a surjection.




The universal mapping property of quotient construction

Let R be a symmetric and transitive relation on a set X. For any set Y,
precomposing with q yields a bijection

(X/R— V)= {f: X = Y |Vx,y € X, R(x,y) = f(x) = f(y)}




Recall that a relation R on a set A is called an equivalence if it satisfies the
following conditions:

e reflexivity: Va € A, R(a, a),
e symmetry: Va, b € A, R(a, b) — R(b, a), and
e transitivity: Va,b,c € A, R(a, b) = R(b,c) = R(a, c).



Recall that a relation R on a set A is called an equivalence if it satisfies the
following conditions:

e reflexivity: Va € A, R(a, a),
e symmetry: Va, b € A, R(a, b) — R(b, a), and
e transitivity: Va,b,c € A, R(a, b) = R(b,c) = R(a, c).
We usually denote an equivalence relation by the symbol ~ (instead of R).
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Quotients by equivalence relations

For each equivalence ~ on a set X we can construct a set X/ ~ whose
elements are equivalence classes

[XI. ={y e X | x~y}
for all x € X. Now collect all such equivalence classes into one set:
X/ ~=get {[X]~ | x € X}

We call the set X/ ~ the quotient of X by equivalence relation ~.



For an equivalence relation ~, the surjection q: X — X/ ~ has an extra nice
property:
q(x) = q(y) < R(x, y)



Every function f: A — B gives rise to an equivalence relation ~; on A
defined by
a~sb<f(a) =f(b).



Every function f: A — B gives rise to an equivalence relation ~; on A
defined by
a~sb<f(a) =f(b).

That is to say that a ~¢ b if a, b are in the same fibre of f.



Every function f: A — B gives rise to an equivalence relation ~; on A

defined by
a~¢b< fla)=f(b).

That is to say that a ~¢ b if a, b are in the same fibre of f.

Show that the relation above is indeed an equivalence relation.




Image factorization

Suppose f: A — B is a function. We can factor f into a surjection followed by
a bijection followed by an injection.

A f , B

N

that is there are functions q, g, i such thatf =io go q, where q is a
surjection, g is a bijection, and i is an injection.




Proof.
We have to construct the sets C, D and a surjection g, a bijection g and an
injection i.
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Infact, go g =p: X — Im(f).
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For a function f: X — X, define
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Definition
For a function f: X — X, define

Fix(f) =qer {x € X | f(X) = x} .

We call Fix(f) the set of fix-points of f.

Definition
A function f is called an idempotent if f o f = f.

Exercise
Show that if f: X — X is idempotent, then Fix(f) = Im(f).

Exercise
For an idempotent function f: X — X, show that

X/ ~¢ = Fix(f) = Im(f)
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Suppose r: A — B is a retraction. Show that
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Integers as quotient by an equivalence relation

Consider the relation ~ on N x N. where
(mn)~ M,y m+n=n+m.

Prove that this relation is an equivalence.
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Consider the relation ~ on N x N. where
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Integers as quotient by an equivalence relation

Consider the relation ~ on N x N. where
(mn)~ M,y m+n=n+m.

Prove that this relation is an equivalence.
The equivalence class [(0, 0)] is the set {(0,0), (1,1),(2,2),...}. What is the
equivalence class [(0, 1)]?
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Representing integers

We define the set Z of integers as the quotient N x N/ ~.
¢ |n other words, a pair (m, n) represents the would-be integer m — n.

¢ |n this case, there are canonical representatives of the equivalence
classes: those of the form (n, 0) or (0, n).



Addition on integers

We can define the operation of addition on Z by an assignment
+.: Z x Z — 7Z which assigns to the pair ([(m, n)],[(n", ’)]) the class
[(m+m,n+n)].

Show that the assignment +... is well-defined, i.e. it defines a function.
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e Show that for all integers a we have 0+ a=a=a+0.
e Show that for all integers a, b, c we have (a+ b) + c=a+ (b + c).
e Show that for all integers a, b we have a+ b= b + a.




Addition on integers

We can define the operation of addition on Z by an assignment
+.: Z x Z — 7Z which assigns to the pair ([(m, n)],[(n", ’)]) the class
[(m+m,n+n)].

Show that the assignment +... is well-defined, i.e. it defines a function.

e Show that for all integers a we have 0+ a=a=a+0.
e Show that for all integers a, b, c we have (a+ b) + c=a+ (b + c).
e Show that for all integers a, b we have a+ b= b + a.

Construct an idempotent f: N x N — N x N such that Fix(f) is in bijection
with the set of integers.
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We identify a natural number n with the corresponding non-negative integer,
i.e. with the image of (n,0) € N x N in Z.



Induction for integers

We identify a natural number n with the corresponding non-negative integer,
i.e. with the image of (n,0) € N x N in Z.

Suppose P: 7. — Prop is a predicate over integers, and
e P(0) holds,
e vn:N, P(n) = P(succ(n)), and
e VYn:N, P(—n) — P(—succ(n)).

Then we haveVz : 7, P(z).
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quotient is generated by an idempotent.
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We constructed the integers Z as a quotient of N x N, and observed that this
quotient is generated by an idempotent.
We construct the field of rationals Q along the same lines as well, namely as
the quotient
Q =det (Z x N) /=
where
(u,a) = (v, b) =gt (U(b+1) =v(a+1)).

In other words, a pair (u, a) represents the rational number u/(1 + a).
Here too we have a canonical choice of representatives, namely fractions in
lowest terms.



The arithmetic of rational numbers

We write down the arithmetical operations on Q so that we can compute with
fractions.



The order on rational numbers

We equip Q with a total order.



Questions

Thanks for your attention!



