MATH 301

INTRODUCTION TO PROOFS

Sina Hazratpour Johns Hopkins University Fall 2021

- integers

- rational numbers

Relevant sections of the textbook

• Section B.2. (incomplete!)

Recall from problem 5 of homework #4 that for each a binary relation R on a set X we can construct a set X/R whose elements are R-classes

$$[x]_R = \{y \in X \mid R(x, y)\}$$

for all $x \in X$.

Recall from problem 5 of homework #4 that for each a binary relation R on a set X we can construct a set X/R whose elements are R-classes

$$[x]_R = \{y \in X \mid R(x, y)\}$$

for all $x \in X$. Now collect all such *R*-classes into one set:

$$X/R =_{\mathsf{def}} \{ [x]_R \mid x \in X \}$$

Recall from problem 5 of homework #4 that for each a binary relation R on a set X we can construct a set X/R whose elements are R-classes

$$[x]_R = \{y \in X \mid R(x, y)\}$$

for all $x \in X$. Now collect all such *R*-classes into one set:

$$X/R =_{\mathsf{def}} \{ [x]_R \mid x \in X \}$$

We call the set X/R the quotient of X by the relation R.

Example

Consider the set of natural numbers with the usual ordering $\leq : \mathbb{N} \to \mathbb{N} \to 2$ defined for $m \in \mathbb{N}$ recursively by

 $m \leq 0$ if and only if m = 0, and

 $m \leq \operatorname{succ}(n)$ if and only if $m = \operatorname{succ}(n)$ or $m \leq n$.

Example

Consider the set of natural numbers with the usual ordering $\leq : \mathbb{N} \to \mathbb{N} \to 2$ defined for $m \in \mathbb{N}$ recursively by

 $m \leq 0$ if and only if m = 0, and

 $m \leq \operatorname{succ}(n)$ if and only if $m = \operatorname{succ}(n)$ or $m \leq n$.

We have classes [n] forming a chain in the subset relation ordering: $[0] \supset [1] \supset [2] \supset ...$

Example

Consider the set of natural numbers with the usual ordering $\leq : \mathbb{N} \to \mathbb{N} \to 2$ defined for $m \in \mathbb{N}$ recursively by

 $m \leq 0$ if and only if m = 0, and

 $m \leq \operatorname{succ}(n)$ if and only if $m = \operatorname{succ}(n)$ or $m \leq n$.

We have classes [n] forming a chain in the subset relation ordering: $[0] \supset [1] \supset [2] \supset \dots$ Note that $0 \leq 1$ but $[0] \neq [1]$.

Proposition

Prove that if *R* is reflexive then $\forall x \in X, x \in [x]$.

Proposition

Prove that if *R* is reflexive then $\forall x \in X, x \in [x]$.

Proposition

Prove that if R is transitive then $\forall x, y \in X$, $R(x, y) \land R(y, x) \Rightarrow [x] = [y]$.

Proposition

Prove that if *R* is reflexive then $\forall x \in X, x \in [x]$.

Proposition

Prove that if R is transitive then $\forall x, y \in X$, $R(x, y) \land R(y, x) \Rightarrow [x] = [y]$.

Proposition

Prove that if R is symmetric and transitive then

 $\forall x, y \in X, R(x, y) \Rightarrow [x] = [y].$

Proposition

Prove that if R is reflexive then $\forall x \in X, x \in [x]$.

Proposition

Prove that if R is transitive then $\forall x, y \in X$, $R(x, y) \land R(y, x) \Rightarrow [x] = [y]$.

Proposition

Prove that if R is symmetric and transitive then $\forall x, y \in X, R(x, y) \Rightarrow [x] = [y].$

Proposition

Prove that if R is reflexive, symmetric and transitive then $\forall x, y \in X, R(x, y) \Leftrightarrow [x] = [y].$

 $R(a, b) \Leftrightarrow$ there is an edge from *a* to *b*.

 $R(a, b) \Leftrightarrow$ there is an edge from *a* to *b*.

• What is a class [a] for a vertex a?

 $R(a, b) \Leftrightarrow$ there is an edge from *a* to *b*.

- What is a class [a] for a vertex a?
- Show that if $R(a, b) \wedge R(b, a)$ then it is not necessarily true that [a] = [b].

 $R(a, b) \Leftrightarrow$ there is a path from *a* to *b*.

 $R(a, b) \Leftrightarrow$ there is a path from *a* to *b*.

• What is a class [a] for a vertex a?

 $R(a, b) \Leftrightarrow$ there is a path from *a* to *b*.

- What is a class [a] for a vertex a?
- Show that if *R*(*a*, *b*) ∧ *R*(*b*, *a*) then [*a*] = [*b*].

Proposition

Prove that the function $q: X \to X/R$ assigning to each x in X the class [x] in X/R is a surjection.

The universal mapping property of quotient construction

Proposition

Let R be a symmetric and transitive relation on a set X. For any set Y, precomposing with q yields a bijection

$$(X/R \rightarrow Y) \cong \{f \colon X \rightarrow Y \mid \forall x, y \in X, R(x, y) \Rightarrow f(x) = f(y)\}$$

Recall that a relation *R* on a set *A* is called an equivalence if it satisfies the following conditions:

- reflexivity: $\forall a \in A, R(a, a),$
- symmetry: $\forall a, b \in A, R(a, b) \rightarrow R(b, a)$, and
- transitivity: $\forall a, b, c \in A$, $R(a, b) \Rightarrow R(b, c) \Rightarrow R(a, c)$.

Recall that a relation *R* on a set *A* is called an equivalence if it satisfies the following conditions:

- reflexivity: $\forall a \in A, R(a, a),$
- symmetry: $\forall a, b \in A, R(a, b) \rightarrow R(b, a)$, and
- transitivity: $\forall a, b, c \in A$, $R(a, b) \Rightarrow R(b, c) \Rightarrow R(a, c)$.

We usually denote an equivalence relation by the symbol \sim (instead of *R*).

Quotients by equivalence relations

For each equivalence \sim on a set *X* we can construct a set *X*/ \sim whose elements are equivalence classes

$$[x]_{\sim} = \{y \in X \mid x \sim y\}$$

for all $x \in X$.

Quotients by equivalence relations

For each equivalence \sim on a set *X* we can construct a set *X*/ \sim whose elements are equivalence classes

$$[x]_{\sim} = \{y \in X \mid x \sim y\}$$

for all $x \in X$. Now collect all such equivalence classes into one set:

$$X/\sim =_{\mathsf{def}} \{[x]_{\sim} \mid x \in X\}$$

Quotients by equivalence relations

For each equivalence \sim on a set *X* we can construct a set *X*/ \sim whose elements are equivalence classes

$$[x]_{\sim} = \{y \in X \mid x \sim y\}$$

for all $x \in X$. Now collect all such equivalence classes into one set:

$$X/\sim =_{\mathsf{def}} \{[x]_{\sim} \mid x \in X\}$$

We call the set X / \sim the quotient of X by equivalence relation \sim .

For an equivalence relation \sim , the surjection $q: X \rightarrow X / \sim$ has an extra nice property:

 $q(x) = q(y) \Leftrightarrow R(x,y)$

Every function $f: A \rightarrow B$ gives rise to an equivalence relation \sim_f on A defined by

$$a \sim_f b \Leftrightarrow f(a) = f(b)$$
.

Every function $f: A \rightarrow B$ gives rise to an equivalence relation \sim_f on A defined by

$$a \sim_f b \Leftrightarrow f(a) = f(b)$$
.

That is to say that $a \sim_f b$ if a, b are in the same fibre of f.

Every function $f: A \rightarrow B$ gives rise to an equivalence relation \sim_f on A defined by

$$a \sim_f b \Leftrightarrow f(a) = f(b)$$
.

That is to say that $a \sim_f b$ if a, b are in the same fibre of f.

Exercise

Show that the relation above is indeed an equivalence relation.

Image factorization

Proposition

Suppose $f: A \rightarrow B$ is a function. We can factor f into a surjection followed by a bijection followed by an injection.

that is there are functions q, g, i such that $f = i \circ g \circ q$, where q is a surjection, g is a bijection, and i is an injection.

We have to construct the sets C, D and a surjection q, a bijection g and an injection i.

We have to construct the sets *C*, *D* and a surjection *q*, a bijection *g* and an injection *i*. Now we define *C* to be A/ \sim_f , and we define *D* to be the image $f_*(A)$ of *A* under *f*.

We have to construct the sets *C*, *D* and a surjection *q*, a bijection *g* and an injection *i*. Now we define *C* to be A/\sim_f , and we define *D* to be the image $f_*(A)$ of *A* under *f*. We also define *q* to be the obvious quotient map and *i* to be the obvious inclusion. As shown before, *q* is surjective and *i* is injective.

We have to construct the sets *C*, *D* and a surjection *q*, a bijection *g* and an injection *i*. Now we define *C* to be A/\sim_f , and we define *D* to be the image $f_*(A)$ of *A* under *f*. We also define *q* to be the obvious quotient map and *i* to be the obvious inclusion. As shown before, *q* is surjective and *i* is injective. We define *g* to be the assignment which takes an equivalence class [x] to the element $f(x) \in B$.

We have to construct the sets *C*, *D* and a surjection *q*, a bijection *g* and an injection *i*. Now we define *C* to be A/ \sim_f , and we define *D* to be the image $f_*(A)$ of *A* under *f*. We also define *q* to be the obvious quotient map and *i* to be the obvious inclusion. As shown before, *q* is surjective and *i* is injective. We define *g* to be the assignment which takes an equivalence class [x] to the element $f(x) \in B$. Note that *g* is well-defined, since if [x] = [y] then $x \sim_f y$ and therefore, by the definition of \sim_f , we have f(x) = f(y).

We have to construct the sets *C*, *D* and a surjection *q*, a bijection *g* and an injection *i*. Now we define *C* to be A/ \sim_f , and we define *D* to be the image $f_*(A)$ of *A* under *f*. We also define *q* to be the obvious quotient map and *i* to be the obvious inclusion. As shown before, *q* is surjective and *i* is injective. We define *g* to be the assignment which takes an equivalence class [x] to the element $f(x) \in B$. Note that *g* is well-defined, since if [x] = [y] then $x \sim_f y$ and therefore, by the definition of \sim_f , we have f(x) = f(y). We now show that *g* is a bijection.

We have to construct the sets C, D and a surjection q, a bijection q and an injection *i*. Now we define C to be A/\sim_t , and we define D to be the image $f_*(A)$ of A under f. We also define q to be the obvious quotient map and i to be the obvious inclusion. As shown before, q is surjective and i is injective. We define q to be the assignment which takes an equivalence class [x] to the element $f(x) \in B$. Note that g is well-defined, since if [x] = [y] then $x \sim_f y$ and therefore, by the definition of \sim_f , we have f(x) = f(y). We now show that g is a bijection. g is injective since for every $x, v \in A$, if q([x]) = q([y]) then f(x) = f(y) and therefore, [x] = [y].

We have to construct the sets C, D and a surjection q, a bijection q and an injection *i*. Now we define C to be A/\sim_t , and we define D to be the image $f_*(A)$ of A under f. We also define q to be the obvious quotient map and i to be the obvious inclusion. As shown before, q is surjective and i is injective. We define q to be the assignment which takes an equivalence class [x] to the element $f(x) \in B$. Note that g is well-defined, since if [x] = [y] then $x \sim_f y$ and therefore, by the definition of \sim_f , we have f(x) = f(y). We now show that q is a bijection. q is injective since for every $x, y \in A$, if q([x]) = q([y]) then f(x) = f(y) and therefore, [x] = [y]. Also, q is surjective: given b in $f_*(A)$ there is some $a \in A$ such that b = f(a) = q([a]).

We have to construct the sets C, D and a surjection q, a bijection q and an injection *i*. Now we define C to be A/\sim_t , and we define D to be the image $f_*(A)$ of A under f. We also define q to be the obvious quotient map and i to be the obvious inclusion. As shown before, q is surjective and i is injective. We define q to be the assignment which takes an equivalence class [x] to the element $f(x) \in B$. Note that g is well-defined, since if [x] = [y] then $x \sim_f y$ and therefore, by the definition of \sim_f , we have f(x) = f(y). We now show that q is a bijection. q is injective since for every $x, y \in A$, if q([x]) = q([y]) then f(x) = f(y) and therefore, [x] = [y]. Also, q is surjective: given b in $f_*(A)$ there is some $a \in A$ such that b = f(a) = q([a]).

Our factorization diagram becomes

Our factorization diagram becomes

In fact, $g \circ q = p \colon X \to \text{Im}(f)$.

For a function $f: X \to X$, define

$$\mathsf{Fix}(f) =_{\mathsf{def}} \{ x \in X \mid f(x) = x \} \,.$$

We call Fix(f) the set of fix-points of f.

For a function $f: X \to X$, define

$$\mathsf{Fix}(f) =_{\mathsf{def}} \{ x \in X \mid f(x) = x \} \,.$$

We call Fix(f) the set of fix-points of f.

Definition

A function f is called an idempotent if $f \circ f = f$.

For a function $f: X \to X$, define

$$\mathsf{Fix}(f) =_{\mathsf{def}} \{ x \in X \mid f(x) = x \} \,.$$

We call Fix(f) the set of fix-points of f.

Definition

A function f is called an idempotent if $f \circ f = f$.

Exercise

Show that if $f: X \to X$ is idempotent, then $Fix(f) \cong Im(f)$.

For a function $f: X \to X$, define

$$\mathsf{Fix}(f) =_{\mathsf{def}} \{ x \in X \mid f(x) = x \} \,.$$

We call Fix(f) the set of fix-points of f.

Definition

A function f is called an idempotent if $f \circ f = f$.

Exercise

Show that if $f: X \to X$ is idempotent, then $Fix(f) \cong Im(f)$.

Exercise

For an idempotent function $f: X \rightarrow X$, show that

 $X/\sim_f \cong \operatorname{Fix}(f)\cong \operatorname{Im}(f)$

Exercise

Suppose $r: A \rightarrow B$ is a retraction. Show that

$$B \cong A / \sim_r$$

Exercise

Suppose $r: A \rightarrow B$ is a retraction. Show that

$$B \cong A / \sim_r$$

Integers as quotient by an equivalence relation

Consider the relation \sim on $\mathbb{N}\times\mathbb{N}.$ where

 $(m,n) \sim (m',n') \Leftrightarrow m+n' = n+m'$.

Prove that this relation is an equivalence.

Integers as quotient by an equivalence relation

Consider the relation \sim on $\mathbb{N}\times\mathbb{N}.$ where

 $(m,n) \sim (m',n') \Leftrightarrow m+n' = n+m'$.

Prove that this relation is an equivalence.

The equivalence class [(0, 0)] is the set $\{(0, 0), (1, 1), (2, 2), ...\}$.

Integers as quotient by an equivalence relation

Consider the relation \sim on $\mathbb{N}\times\mathbb{N}.$ where

 $(m,n) \sim (m',n') \Leftrightarrow m+n' = n+m'$.

Prove that this relation is an equivalence. The equivalence class [(0,0)] is the set $\{(0,0), (1,1), (2,2), ...\}$. What is the equivalence class [(0,1)]?

Representing integers

We define the set $\mathbb Z$ of integers as the quotient $\mathbb N\times\mathbb N/\sim.$

We define the set \mathbb{Z} of integers as the quotient $\mathbb{N} \times \mathbb{N} / \sim$.

• In other words, a pair (m, n) represents the would-be integer m - n.

We define the set \mathbb{Z} of integers as the quotient $\mathbb{N} \times \mathbb{N} / \sim$.

- In other words, a pair (m, n) represents the would-be integer m n.
- In this case, there are *canonical representatives* of the equivalence classes: those of the form (*n*, 0) or (0, *n*).

Addition on integers

We can define the operation of addition on $\ensuremath{\mathbb{Z}}$ by an assignment

+_∼: $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ which assigns to the pair ([(*m*, *n*)], [(*m*', *n*')]) the class [(*m* + *m*', *n* + *n*')].

Exercise

Show that the assignment $+_{\sim}$ is well-defined, i.e. it defines a function.

Addition on integers

We can define the operation of addition on $\ensuremath{\mathbb{Z}}$ by an assignment

+_∼: $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ which assigns to the pair ([(*m*, *n*)], [(*m*', *n*')]) the class [(*m* + *m*', *n* + *n*')].

Exercise

Show that the assignment $+_{\sim}$ is well-defined, i.e. it defines a function.

Exercise

- Show that for all integers a we have 0 + a = a = a + 0.
- Show that for all integers a, b, c we have (a + b) + c = a + (b + c).
- Show that for all integers a, b we have a + b = b + a.

Addition on integers

We can define the operation of addition on \mathbb{Z} by an assignment

+_∼: $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ which assigns to the pair ([(*m*, *n*)], [(*m*', *n*')]) the class [(*m* + *m*', *n* + *n*')].

Exercise

Show that the assignment $+_{\sim}$ is well-defined, i.e. it defines a function.

Exercise

- Show that for all integers a we have 0 + a = a = a + 0.
- Show that for all integers a, b, c we have (a + b) + c = a + (b + c).
- Show that for all integers a, b we have a + b = b + a.

Exercise

Construct an idempotent $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ such that Fix(f) is in bijection with the set of integers.

We can define the operation of multiplication on \mathbb{Z} by an assignment $\cdot_{\sim} : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ which assigns to the pair ([(*m*, *n*)], [(*m*', *n*')]) the class [(*m* · *m*', *n* · *n*')].

Exercise

Show that the assignment \cdot_{\sim} is well-defined, i.e. it defines a function.

We can define the operation of multiplication on \mathbb{Z} by an assignment $\cdot_{\sim} : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ which assigns to the pair ([(*m*, *n*)], [(*m*', *n*')]) the class [(*m* · *m*', *n* · *n*')].

Exercise

Show that the assignment \cdot_{\sim} is well-defined, i.e. it defines a function.

Exercise

- Show that for all integers a we have 0 + a = a = a + 0.
- Show that for all integers a, b, c we have (a + b) + c = a + (b + c).
- Show that for all integers a, b we have a + b = b + a.

Induction for integers

We identify a natural number *n* with the corresponding non-negative integer, i.e. with the image of $(n, 0) \in \mathbb{N} \times \mathbb{N}$ in \mathbb{Z} .

Induction for integers

We identify a natural number *n* with the corresponding non-negative integer, i.e. with the image of $(n, 0) \in \mathbb{N} \times \mathbb{N}$ in \mathbb{Z} .

Lemma

Suppose $P \colon \mathbb{Z} \to \mathbb{P}$ rop is a predicate over integers, and

- P(0) holds,
- $\forall n : \mathbb{N}, P(n) \Rightarrow P(\operatorname{succ}(n)), and$
- $\forall n : \mathbb{N}, P(-n) \rightarrow P(-\operatorname{succ}(n)).$

Then we have $\forall z : \mathbb{Z}, P(z)$.

We construct the *field* of rationals \mathbb{Q} along the same lines as well, namely as the quotient

$$\mathbb{Q}=_{\mathsf{def}}(\mathbb{Z} imes\mathbb{N})/{pprox}$$

where

$$(u, a) \approx (v, b) =_{def} (u(b + 1) = v(a + 1)).$$

We construct the *field* of rationals \mathbb{Q} along the same lines as well, namely as the quotient

$$\mathbb{Q}=_{\mathsf{def}}(\mathbb{Z} imes\mathbb{N})/{pprox}$$

where

$$(u, a) \approx (v, b) =_{def} (u(b + 1) = v(a + 1)).$$

In other words, a pair (*u*, *a*) represents the rational number u/(1 + a).

We construct the *field* of rationals \mathbb{Q} along the same lines as well, namely as the quotient

$$\mathbb{Q}=_{\mathsf{def}}(\mathbb{Z} imes\mathbb{N})/{pprox}$$

where

$$(u, a) \approx (v, b) =_{def} (u(b+1) = v(a+1)).$$

In other words, a pair (u, a) represents the rational number u/(1 + a). Here too we have a canonical choice of representatives, namely fractions in lowest terms.

The arithmetic of rational numbers

We write down the arithmetical operations on $\ensuremath{\mathbb{Q}}$ so that we can compute with fractions.

The order on rational numbers

We equip \mathbb{Q} with a total order.

Questions

Thanks for your attention!