MATH 301

INTRODUCTION TO PROOFS

Sina Hazratpour
Johns Hopkins University
Fall 2021

- integers
- rational numbers

Relevant sections of the textbook

- Section B.2. (incomplete!)

Quotients by relations

Recall from problem 5 of homework \#4 that for each a binary relation R on a set X we can construct a set X / R whose elements are R-classes

$$
[x]_{R}=\{y \in X \mid R(x, y)\}
$$

for all $x \in X$.

Quotients by relations

Recall from problem 5 of homework \#4 that for each a binary relation R on a set X we can construct a set X / R whose elements are R-classes

$$
[x]_{R}=\{y \in X \mid R(x, y)\}
$$

for all $x \in X$. Now collect all such R-classes into one set:

$$
X / R=\operatorname{def}\left\{[x]_{R} \mid x \in X\right\}
$$

Quotients by relations

Recall from problem 5 of homework \#4 that for each a binary relation R on a set X we can construct a set X / R whose elements are R-classes

$$
[x]_{R}=\{y \in X \mid R(x, y)\}
$$

for all $x \in X$. Now collect all such R-classes into one set:

$$
X / R=\operatorname{def}\left\{[x]_{R} \mid x \in X\right\}
$$

We call the set X / R the quotient of X by the relation R.

Example

Consider the set of natural numbers with the usual ordering $\leqslant: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbf{2}$ defined for $m \in \mathbb{N}$ recursively by
$m \leqslant 0$ if and only if $m=0$, and
$m \leqslant \operatorname{succ}(n)$ if and only if $m=\operatorname{succ}(n)$ or $m \leqslant n$.

Example

Consider the set of natural numbers with the usual ordering $\leqslant: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbf{2}$ defined for $m \in \mathbb{N}$ recursively by

$$
m \leqslant 0 \text { if and only if } m=0 \text {, and }
$$

$$
m \leqslant \operatorname{succ}(n) \text { if and only if } m=\operatorname{succ}(n) \text { or } m \leqslant n .
$$

We have classes [n] forming a chain in the subset relation ordering: $[0] \supset[1] \supset[2] \supset \ldots$.

Example

Consider the set of natural numbers with the usual ordering $\leqslant: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbf{2}$ defined for $m \in \mathbb{N}$ recursively by

$$
\begin{aligned}
& m \leqslant 0 \text { if and only if } m=0 \text {, and } \\
& m \leqslant \operatorname{succ}(n) \text { if and only if } m=\operatorname{succ}(n) \text { or } m \leqslant n .
\end{aligned}
$$

We have classes [n] forming a chain in the subset relation ordering: $[0] \supset[1] \supset[2] \supset \ldots$. Note that $0 \leqslant 1$ but $[0] \neq[1]$.

So far R is just a general binary relation. In general we do not have that
Proposition
Prove that if R is reflexive then $\forall x \in X, x \in[x]$.

So far R is just a general binary relation. In general we do not have that
Proposition
Prove that if R is reflexive then $\forall x \in X, x \in[x]$.
Proposition
Prove that if R is transitive then $\forall x, y \in X, R(x, y) \wedge R(y, x) \Rightarrow[x]=[y]$.

So far R is just a general binary relation. In general we do not have that
Proposition
Prove that if R is reflexive then $\forall x \in X, x \in[x]$.

Proposition

Prove that if R is transitive then $\forall x, y \in X, R(x, y) \wedge R(y, x) \Rightarrow[x]=[y]$.

Proposition

Prove that if R is symmetric and transitive then
$\forall x, y \in X, R(x, y) \Rightarrow[x]=[y]$.

So far R is just a general binary relation. In general we do not have that

Proposition

Prove that if R is reflexive then $\forall x \in X, x \in[x]$.

Proposition

Prove that if R is transitive then $\forall x, y \in X, R(x, y) \wedge R(y, x) \Rightarrow[x]=[y]$.

Proposition

Prove that if R is symmetric and transitive then
$\forall x, y \in X, R(x, y) \Rightarrow[x]=[y]$.

Proposition

Prove that if R is reflexive, symmetric and transitive then
$\forall x, y \in X, R(x, y) \Leftrightarrow[x]=[y]$.

Suppose we have a graph G. Define a relation R on vertices of G by imposing that
$R(a, b) \Leftrightarrow$ there is an edge from a to b.

Suppose we have a graph G. Define a relation R on vertices of G by imposing that

$$
R(a, b) \Leftrightarrow \text { there is an edge from } a \text { to } b \text {. }
$$

-What is a class [a] for a vertex a ?

Suppose we have a graph G. Define a relation R on vertices of G by imposing that

$$
R(a, b) \Leftrightarrow \text { there is an edge from } a \text { to } b \text {. }
$$

- What is a class [a] for a vertex a ?
- Show that if $R(a, b) \wedge R(b, a)$ then it is not necessarily true that $[a]=[b]$.

Suppose we have a graph G. Define a relation R on vertices of G by imposing that

$$
R(a, b) \Leftrightarrow \text { there is a path from } a \text { to } b \text {. }
$$

Suppose we have a graph G. Define a relation R on vertices of G by imposing that

$$
R(a, b) \Leftrightarrow \text { there is a path from } a \text { to } b \text {. }
$$

- What is a class [a] for a vertex a ?

Suppose we have a graph G. Define a relation R on vertices of G by imposing that

$$
R(a, b) \Leftrightarrow \text { there is a path from } a \text { to } b .
$$

- What is a class [a] for a vertex a ?
- Show that if $R(a, b) \wedge R(b, a)$ then $[a]=[b]$.

Proposition

Prove that the function $q: X \rightarrow X / R$ assigning to each x in X the class $[x]$ in X / R is a surjection.

The universal mapping property of quotient construction

Proposition

Let R be a symmetric and transitive relation on a set X. For any set Y, precomposing with q yields a bijection

$$
(X / R \rightarrow Y) \cong\{f: X \rightarrow Y \mid \forall x, y \in X, R(x, y) \Rightarrow f(x)=f(y)\}
$$

Recall that a relation R on a set A is called an equivalence if it satisfies the following conditions:

- reflexivity: $\forall a \in A, R(a, a)$,
- symmetry: $\forall a, b \in A, R(a, b) \rightarrow R(b, a)$, and
- transitivity: $\forall a, b, c \in A, R(a, b) \Rightarrow R(b, c) \Rightarrow R(a, c)$.

Recall that a relation R on a set A is called an equivalence if it satisfies the following conditions:

- reflexivity: $\forall a \in A, R(a, a)$,
- symmetry: $\forall a, b \in A, R(a, b) \rightarrow R(b, a)$, and
- transitivity: $\forall a, b, c \in A, R(a, b) \Rightarrow R(b, c) \Rightarrow R(a, c)$.

We usually denote an equivalence relation by the symbol \sim (instead of R).

Quotients by equivalence relations

For each equivalence \sim on a set X we can construct a set X / \sim whose elements are equivalence classes

$$
[x]_{\sim}=\{y \in X \mid x \sim y\}
$$

for all $x \in X$.

Quotients by equivalence relations

For each equivalence \sim on a set X we can construct a set X / \sim whose elements are equivalence classes

$$
[x]_{\sim}=\{y \in X \mid x \sim y\}
$$

for all $x \in X$. Now collect all such equivalence classes into one set:

$$
X / \sim=_{\operatorname{def}}\left\{[x]_{\sim} \mid x \in X\right\}
$$

Quotients by equivalence relations

For each equivalence \sim on a set X we can construct a set X / \sim whose elements are equivalence classes

$$
[x]_{\sim}=\{y \in X \mid x \sim y\}
$$

for all $x \in X$. Now collect all such equivalence classes into one set:

$$
X / \sim=_{\operatorname{def}}\left\{[x]_{\sim} \mid x \in X\right\}
$$

We call the set X / \sim the quotient of X by equivalence relation \sim.

For an equivalence relation \sim, the surjection $q: X \rightarrow X / \sim$ has an extra nice property:

$$
q(x)=q(y) \Leftrightarrow R(x, y)
$$

Every function $f: A \rightarrow B$ gives rise to an equivalence relation \sim_{f} on A defined by

$$
a \sim_{f} b \Leftrightarrow f(a)=f(b) .
$$

Every function $f: A \rightarrow B$ gives rise to an equivalence relation \sim_{f} on A defined by

$$
a \sim_{f} b \Leftrightarrow f(a)=f(b) .
$$

That is to say that $a \sim_{f} b$ if a, b are in the same fibre of f.

Every function $f: A \rightarrow B$ gives rise to an equivalence relation \sim_{f} on A defined by

$$
a \sim_{f} b \Leftrightarrow f(a)=f(b) .
$$

That is to say that $a \sim_{f} b$ if a, b are in the same fibre of f.

Exercise

Show that the relation above is indeed an equivalence relation.

Image factorization

Proposition

Suppose $f: A \rightarrow B$ is a function. We can factor f into a surjection followed by a bijection followed by an injection.

that is there are functions q, g, i such that $f=i \circ g \circ q$, where q is a surjection, g is a bijection, and i is an injection.

Proof.
We have to construct the sets C, D and a surjection q, a bijection g and an injection i.

Proof.

We have to construct the sets C, D and a surjection q, a bijection g and an injection i. Now we define C to be A / \sim_{f}, and we define D to be the image $f_{*}(A)$ of A under f.

Proof.

We have to construct the sets C, D and a surjection q, a bijection g and an injection i. Now we define C to be A / \sim_{f}, and we define D to be the image $f_{*}(A)$ of A under f. We also define q to be the obvious quotient map and i to be the obvious inclusion. As shown before, q is surjective and i is injective.

Proof.

We have to construct the sets C, D and a surjection q, a bijection g and an injection i. Now we define C to be A / \sim_{f}, and we define D to be the image $f_{*}(A)$ of A under f. We also define q to be the obvious quotient map and i to be the obvious inclusion. As shown before, q is surjective and i is injective. We define g to be the assignment which takes an equivalence class $[x]$ to the element $f(x) \in B$.

Proof.

We have to construct the sets C, D and a surjection q, a bijection g and an injection i. Now we define C to be A / \sim_{f}, and we define D to be the image $f_{*}(A)$ of A under f. We also define q to be the obvious quotient map and i to be the obvious inclusion. As shown before, q is surjective and i is injective. We define g to be the assignment which takes an equivalence class $[x]$ to the element $f(x) \in B$. Note that g is well-defined, since if $[x]=[y]$ then $x \sim_{f} y$ and therefore, by the definition of \sim_{f}, we have $f(x)=f(y)$.

Proof.

We have to construct the sets C, D and a surjection q, a bijection g and an injection i. Now we define C to be A / \sim_{f}, and we define D to be the image $f_{*}(A)$ of A under f. We also define q to be the obvious quotient map and i to be the obvious inclusion. As shown before, q is surjective and i is injective. We define g to be the assignment which takes an equivalence class $[x]$ to the element $f(x) \in B$. Note that g is well-defined, since if $[x]=[y]$ then $x \sim_{f} y$ and therefore, by the definition of \sim_{f}, we have $f(x)=f(y)$. We now show that g is a bijection.

Proof.

We have to construct the sets C, D and a surjection q, a bijection g and an injection i. Now we define C to be A / \sim_{f}, and we define D to be the image $f_{*}(A)$ of A under f. We also define q to be the obvious quotient map and i to be the obvious inclusion. As shown before, q is surjective and i is injective. We define g to be the assignment which takes an equivalence class $[x]$ to the element $f(x) \in B$. Note that g is well-defined, since if $[x]=[y]$ then $x \sim_{f} y$ and therefore, by the definition of \sim_{f}, we have $f(x)=f(y)$. We now show that g is a bijection. g is injective since for every $x, y \in A$, if $g([x])=g([y])$ then $f(x)=f(y)$ and therefore, $[x]=[y]$.

Proof.

We have to construct the sets C, D and a surjection q, a bijection g and an injection i. Now we define C to be A / \sim_{f}, and we define D to be the image $f_{*}(A)$ of A under f. We also define q to be the obvious quotient map and i to be the obvious inclusion. As shown before, q is surjective and i is injective. We define g to be the assignment which takes an equivalence class $[x]$ to the element $f(x) \in B$. Note that g is well-defined, since if $[x]=[y]$ then $x \sim_{f} y$ and therefore, by the definition of \sim_{f}, we have $f(x)=f(y)$. We now show that g is a bijection. g is injective since for every $x, y \in A$, if $g([x])=g([y])$ then $f(x)=f(y)$ and therefore, $[x]=[y]$. Also, g is surjective: given b in $f_{*}(A)$ there is some $a \in A$ such that $b=f(a)=g([a])$.

Proof.

We have to construct the sets C, D and a surjection q, a bijection g and an injection i. Now we define C to be A / \sim_{f}, and we define D to be the image $f_{*}(A)$ of A under f. We also define q to be the obvious quotient map and i to be the obvious inclusion. As shown before, q is surjective and i is injective. We define g to be the assignment which takes an equivalence class $[x]$ to the element $f(x) \in B$. Note that g is well-defined, since if $[x]=[y]$ then $x \sim_{f} y$ and therefore, by the definition of \sim_{f}, we have $f(x)=f(y)$. We now show that g is a bijection. g is injective since for every $x, y \in A$, if $g([x])=g([y])$ then $f(x)=f(y)$ and therefore, $[x]=[y]$. Also, g is surjective: given b in $f_{*}(A)$ there is some $a \in A$ such that $b=f(a)=g([a])$.

Our factorization diagram becomes

Our factorization diagram becomes

In fact, $g \circ q=p: X \rightarrow \operatorname{Im}(f)$.

Definition

For a function $f: X \rightarrow X$, define
$\operatorname{Fix}(f)=$ def $_{\text {de }}\{x \in X \mid f(x)=x\}$.
We call Fix (f) the set of fix-points of f.

Definition

For a function $f: X \rightarrow X$, define
$\operatorname{Fix}(f)=$ def $_{\text {def }}\{x \in X \mid f(x)=x\}$.
We call Fix (f) the set of fix-points of f.

Definition

A function f is called an idempotent if $f \circ f=f$.

Definition
For a function $f: X \rightarrow X$, define $\operatorname{Fix}(f)=\operatorname{def}\{x \in X \mid f(x)=x\}$.

We call $\operatorname{Fix}(f)$ the set of fix-points of f.

Definition

A function f is called an idempotent if $f \circ f=f$.

Exercise

Show that if $f: X \rightarrow X$ is idempotent, then $\operatorname{Fix}(f) \cong \operatorname{Im}(f)$.

Definition

For a function $f: X \rightarrow X$, define

$$
\operatorname{Fix}(f)=\operatorname{def}_{\text {def }}\{x \in X \mid f(x)=x\} .
$$

We call Fix (f) the set of fix-points of f.

Definition

A function f is called an idempotent if $f \circ f=f$.

Exercise

Show that if $f: X \rightarrow X$ is idempotent, then $\operatorname{Fix}(f) \cong \mathbf{I m}(f)$.
Exercise
For an idempotent function $f: X \rightarrow X$, show that

$$
X / \sim_{f} \cong \operatorname{Fix}(f) \cong \operatorname{Im}(f)
$$

Exercise
Suppose $r: A \rightarrow B$ is a retraction. Show that

$$
B \cong A / \sim_{r}
$$

Exercise
Suppose $r: A \rightarrow B$ is a retraction. Show that

$$
B \cong A / \sim_{r}
$$

Integers as quotient by an equivalence relation

Consider the relation \sim on $\mathbb{N} \times \mathbb{N}$. where

$$
(m, n) \sim\left(m^{\prime}, n^{\prime}\right) \Leftrightarrow m+n^{\prime}=n+m^{\prime} .
$$

Prove that this relation is an equivalence.

Integers as quotient by an equivalence relation

Consider the relation \sim on $\mathbb{N} \times \mathbb{N}$. where

$$
(m, n) \sim\left(m^{\prime}, n^{\prime}\right) \Leftrightarrow m+n^{\prime}=n+m^{\prime} .
$$

Prove that this relation is an equivalence.
The equivalence class $[(0,0)]$ is the set $\{(0,0),(1,1),(2,2), \ldots\}$.

Integers as quotient by an equivalence relation

Consider the relation \sim on $\mathbb{N} \times \mathbb{N}$. where

$$
(m, n) \sim\left(m^{\prime}, n^{\prime}\right) \Leftrightarrow m+n^{\prime}=n+m^{\prime} .
$$

Prove that this relation is an equivalence.
The equivalence class $[(0,0)]$ is the set $\{(0,0),(1,1),(2,2), \ldots\}$. What is the equivalence class $[(0,1)]$?

Representing integers

We define the set \mathbb{Z} of integers as the quotient $\mathbb{N} \times \mathbb{N} / \sim$.

Representing integers

We define the set \mathbb{Z} of integers as the quotient $\mathbb{N} \times \mathbb{N} / \sim$.

- In other words, a pair (m, n) represents the would-be integer $m-n$.

Representing integers

We define the set \mathbb{Z} of integers as the quotient $\mathbb{N} \times \mathbb{N} / \sim$.

- In other words, a pair (m, n) represents the would-be integer $m-n$.
- In this case, there are canonical representatives of the equivalence classes: those of the form $(n, 0)$ or $(0, n)$.

Addition on integers

We can define the operation of addition on \mathbb{Z} by an assignment
$+\sim: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ which assigns to the pair $\left([(m, n)],\left[\left(m^{\prime}, n^{\prime}\right)\right]\right)$ the class
$\left[\left(m+m^{\prime}, n+n^{\prime}\right)\right]$.

Exercise

Show that the assignment +~ is well-defined, i.e. it defines a function.

Addition on integers

We can define the operation of addition on \mathbb{Z} by an assignment
$+\sim: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ which assigns to the pair $\left([(m, n)],\left[\left(m^{\prime}, n^{\prime}\right)\right]\right)$ the class
$\left[\left(m+m^{\prime}, n+n^{\prime}\right)\right]$.

Exercise

Show that the assignment +~ is well-defined, i.e. it defines a function.

Exercise

- Show that for all integers a we have $0+a=a=a+0$.
- Show that for all integers a, b, c we have $(a+b)+c=a+(b+c)$.
- Show that for all integers a, b we have $a+b=b+a$.

Addition on integers

We can define the operation of addition on \mathbb{Z} by an assignment $+\sim: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ which assigns to the pair $\left([(m, n)],\left[\left(m^{\prime}, n^{\prime}\right)\right]\right)$ the class $\left[\left(m+m^{\prime}, n+n^{\prime}\right)\right]$.

Exercise

Show that the assignment +~ is well-defined, i.e. it defines a function.

Exercise

- Show that for all integers a we have $0+a=a=a+0$.
- Show that for all integers a, b, c we have $(a+b)+c=a+(b+c)$.
- Show that for all integers a, b we have $a+b=b+a$.

Exercise

Construct an idempotent $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ such that $\operatorname{Fix}(f)$ is in bijection with the set of integers.

We can define the operation of multiplication on \mathbb{Z} by an assignment $\cdot \sim: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ which assigns to the pair $\left([(m, n)],\left[\left(m^{\prime}, n^{\prime}\right)\right]\right)$ the class $\left[\left(m \cdot m^{\prime}, n \cdot n^{\prime}\right)\right]$.

Exercise

Show that the assignment $\cdot \sim$ is well-defined, i.e. it defines a function.

We can define the operation of multiplication on \mathbb{Z} by an assignment $\cdot \sim: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ which assigns to the pair $\left([(m, n)],\left[\left(m^{\prime}, n^{\prime}\right)\right]\right)$ the class $\left[\left(m \cdot m^{\prime}, n \cdot n^{\prime}\right)\right]$.

Exercise

Show that the assignment $\cdot \sim$ is well-defined, i.e. it defines a function.

Exercise

- Show that for all integers a we have $0+a=a=a+0$.
- Show that for all integers a, b, c we have $(a+b)+c=a+(b+c)$.
- Show that for all integers a, b we have $a+b=b+a$.

Induction for integers

We identify a natural number n with the corresponding non-negative integer, i.e. with the image of $(n, 0) \in \mathbb{N} \times \mathbb{N}$ in \mathbb{Z}.

Induction for integers

We identify a natural number n with the corresponding non-negative integer, i.e. with the image of $(n, 0) \in \mathbb{N} \times \mathbb{N}$ in \mathbb{Z}.

Lemma

Suppose $P: \mathbb{Z} \rightarrow \mathbb{P r o p}$ is a predicate over integers, and

- $P(0)$ holds,
- $\forall n: \mathbb{N}, P(n) \Rightarrow P(\operatorname{succ}(n))$, and
- $\forall n: \mathbb{N}, P(-n) \rightarrow P(-\operatorname{succ}(n))$.

Then we have $\forall z: \mathbb{Z}, P(z)$.

We constructed the integers \mathbb{Z} as a quotient of $\mathbb{N} \times \mathbb{N}$, and observed that this quotient is generated by an idempotent.

We constructed the integers \mathbb{Z} as a quotient of $\mathbb{N} \times \mathbb{N}$, and observed that this quotient is generated by an idempotent.
We construct the field of rationals \mathbb{Q} along the same lines as well, namely as the quotient

$$
\mathbb{Q}=\operatorname{def}(\mathbb{Z} \times \mathbb{N}) / \approx
$$

where

$$
(u, a) \approx(v, b)=_{\operatorname{def}}(u(b+1)=v(a+1)) .
$$

We constructed the integers \mathbb{Z} as a quotient of $\mathbb{N} \times \mathbb{N}$, and observed that this quotient is generated by an idempotent.
We construct the field of rationals \mathbb{Q} along the same lines as well, namely as the quotient

$$
\mathbb{Q}=\operatorname{def}(\mathbb{Z} \times \mathbb{N}) / \approx
$$

where

$$
(u, a) \approx(v, b)=_{\operatorname{def}}(u(b+1)=v(a+1)) .
$$

In other words, a pair (u, a) represents the rational number $u /(1+a)$.

We constructed the integers \mathbb{Z} as a quotient of $\mathbb{N} \times \mathbb{N}$, and observed that this quotient is generated by an idempotent.
We construct the field of rationals \mathbb{Q} along the same lines as well, namely as the quotient

$$
\mathbb{Q}=\operatorname{def}(\mathbb{Z} \times \mathbb{N}) / \approx
$$

where

$$
(u, a) \approx(v, b)=_{\operatorname{def}}(u(b+1)=v(a+1)) .
$$

In other words, a pair (u, a) represents the rational number $u /(1+a)$. Here too we have a canonical choice of representatives, namely fractions in lowest terms.

The arithmetic of rational numbers

We write down the arithmetical operations on \mathbb{Q} so that we can compute with fractions.

The order on rational numbers

We equip \mathbb{Q} with a total order.

Questions

Thanks for your attention!

