
MATH 301
INTRODUCTION TO PROOFS

Sina Hazratpour
Johns Hopkins University

Fall 2021

- integers
- rational numbers



Relevant sections of the textbook

• Section B.2. (incomplete!)



Quotients by relations

Recall from problem 5 of homework #4 that for each a binary relation R on a
set X we can construct a set X/R whose elements are R-classes

[x ]R = {y ∈ X | R(x , y )}

for all x ∈ X .

Now collect all such R-classes into one set:

X/R =def { [x ]R | x ∈ X}

We call the set X/R the quotient of X by the relation R.
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Example
Consider the set of natural numbers with the usual ordering ⩽ : N → N → 2
defined for m ∈ N recursively by

m ⩽ 0 if and only if m = 0, and

m ⩽ succ(n) if and only if m = succ(n) or m ⩽ n.

We have classes [n] forming a chain in the subset relation ordering:
[0] ⊃ [1] ⊃ [2] ⊃ .... Note that 0 ⩽ 1 but [0] ̸= [1].
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So far R is just a general binary relation. In general we do not have that

Proposition
Prove that if R is reflexive then ∀x ∈ X , x ∈ [x ].

Proposition
Prove that if R is transitive then ∀x , y ∈ X , R(x , y ) ∧ R(y , x) ⇒ [x ] = [y ].

Proposition
Prove that if R is symmetric and transitive then
∀x , y ∈ X , R(x , y ) ⇒ [x ] = [y ].

Proposition
Prove that if R is reflexive, symmetric and transitive then
∀x , y ∈ X , R(x , y ) ⇔ [x ] = [y ].
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Suppose we have a graph G. Define a relation R on vertices of G by
imposing that

R(a, b) ⇔ there is an edge from a to b.

• What is a class [a] for a vertex a?

• Show that if R(a, b) ∧ R(b, a) then it is not necessarily true that [a] = [b].
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Suppose we have a graph G. Define a relation R on vertices of G by
imposing that

R(a, b) ⇔ there is a path from a to b.

• What is a class [a] for a vertex a?

• Show that if R(a, b) ∧ R(b, a) then [a] = [b].
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Proposition
Prove that the function q : X → X/R assigning to each x in X the class [x ] in
X/R is a surjection.



The universal mapping property of quotient construction

Proposition

Let R be a symmetric and transitive relation on a set X . For any set Y ,
precomposing with q yields a bijection

(X/R → Y ) ∼= {f : X → Y | ∀x , y ∈ X , R(x , y ) ⇒ f (x) = f (y )}



Recall that a relation R on a set A is called an equivalence if it satisfies the
following conditions:

• reflexivity: ∀a ∈ A, R(a, a),

• symmetry: ∀a, b ∈ A, R(a, b) → R(b, a), and

• transitivity: ∀a, b, c ∈ A, R(a, b) ⇒ R(b, c) ⇒ R(a, c).

We usually denote an equivalence relation by the symbol ∼ (instead of R).
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Quotients by equivalence relations

For each equivalence ∼ on a set X we can construct a set X/ ∼ whose
elements are equivalence classes

[x ]∼ = {y ∈ X | x ∼ y}

for all x ∈ X .

Now collect all such equivalence classes into one set:

X/ ∼=def {[x ]∼ | x ∈ X}

We call the set X/ ∼ the quotient of X by equivalence relation ∼.
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For an equivalence relation ∼, the surjection q : X → X/ ∼ has an extra nice
property:

q(x) = q(y ) ⇔ R(x , y )



Every function f : A → B gives rise to an equivalence relation ∼f on A
defined by

a ∼f b ⇔ f (a) = f (b) .

That is to say that a ∼f b if a, b are in the same fibre of f .

Exercise
Show that the relation above is indeed an equivalence relation.
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Image factorization

Proposition
Suppose f : A → B is a function. We can factor f into a surjection followed by
a bijection followed by an injection.

A B

C D

f

q

g

i

that is there are functions q, g, i such that f = i ◦ g ◦ q, where q is a
surjection, g is a bijection, and i is an injection.



Proof.
We have to construct the sets C, D and a surjection q, a bijection g and an
injection i .

Now we define C to be A/ ∼f , and we define D to be the image
f∗(A) of A under f . We also define q to be the obvious quotient map and i to
be the obvious inclusion. As shown before, q is surjective and i is injective.
We define g to be the assignment which takes an equivalence class [x ] to
the element f (x) ∈ B. Note that g is well-defined, since if [x ] = [y ] then
x ∼f y and therefore, by the definition of ∼f , we have f (x) = f (y ). We now
show that g is a bijection. g is injective since for every x , y ∈ A, if
g([x ]) = g([y ]) then f (x) = f (y ) and therefore, [x ] = [y ]. Also, g is surjective:
given b in f∗(A) there is some a ∈ A such that b = f (a) = g([a]).
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Our factorization diagram becomes

A B

A/ ∼ f∗(A)
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In fact, g ◦ q = p : X → Im(f ).
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Definition
For a function f : X → X, define

Fix(f ) =def {x ∈ X | f (x) = x} .

We call Fix(f ) the set of fix-points of f .

Definition
A function f is called an idempotent if f ◦ f = f .

Exercise
Show that if f : X → X is idempotent, then Fix(f ) ∼= Im(f ).

Exercise
For an idempotent function f : X → X, show that

X/ ∼f
∼= Fix(f ) ∼= Im(f )
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Exercise
Suppose r : A → B is a retraction. Show that

B ∼= A/ ∼r



Exercise
Suppose r : A → B is a retraction. Show that

B ∼= A/ ∼r



Integers as quotient by an equivalence relation

Consider the relation ∼ on N× N. where

(m, n) ∼ (m′, n′) ⇔ m + n′ = n + m′ .

Prove that this relation is an equivalence.

The equivalence class [(0, 0)] is the set {(0, 0), (1, 1), (2, 2), ...}. What is the
equivalence class [(0, 1)]?
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Representing integers

We define the set Z of integers as the quotient N× N/ ∼.

• In other words, a pair (m, n) represents the would-be integer m − n.

• In this case, there are canonical representatives of the equivalence
classes: those of the form (n, 0) or (0, n).
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Addition on integers
We can define the operation of addition on Z by an assignment
+∼ : Z× Z → Z which assigns to the pair ([(m, n)], [(m′, n′)]) the class
[(m + m′, n + n′)].

Exercise
Show that the assignment +∼ is well-defined, i.e. it defines a function.

Exercise
• Show that for all integers a we have 0 + a = a = a + 0.

• Show that for all integers a, b, c we have (a + b) + c = a + (b + c).

• Show that for all integers a, b we have a + b = b + a.

Exercise
Construct an idempotent f : N× N → N× N such that Fix(f ) is in bijection
with the set of integers.
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We can define the operation of multiplication on Z by an assignment
·∼ : Z× Z → Z which assigns to the pair ([(m, n)], [(m′, n′)]) the class
[(m · m′, n · n′)].

Exercise
Show that the assignment ·∼ is well-defined, i.e. it defines a function.

Exercise
• Show that for all integers a we have 0 + a = a = a + 0.
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Induction for integers

We identify a natural number n with the corresponding non-negative integer,
i.e. with the image of (n, 0) ∈ N× N in Z.

Lemma

Suppose P : Z → Prop is a predicate over integers, and

• P(0) holds,

• ∀n : N, P(n) ⇒ P(succ(n)), and

• ∀n : N, P(−n) → P(−succ(n)).

Then we have ∀z : Z, P(z).
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We constructed the integers Z as a quotient of N×N, and observed that this
quotient is generated by an idempotent.

We construct the field of rationals Q along the same lines as well, namely as
the quotient

Q =def (Z× N)/≈

where
(u, a) ≈ (v , b) =def (u(b + 1) = v (a + 1)).

In other words, a pair (u, a) represents the rational number u/(1 + a).
Here too we have a canonical choice of representatives, namely fractions in
lowest terms.
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The arithmetic of rational numbers

We write down the arithmetical operations on Q so that we can compute with
fractions.



The order on rational numbers

We equip Q with a total order.



Questions

Thanks for your attention!


